Difference between revisions of "Hamilton method"
imported>WikipediaBot m (importing text from Wikipedia) |
Dr. Edmonds (talk | contribs) |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
+ | {{Wikipedia|Largest remainder method}} |
||
− | The '''Hamilton method''' is a version of the [[largest remainder method]] for allocating seats proportionally for representative assemblies with [[Party-list proportional representation|party list]] [[voting systems]]. It uses the [[Hare quota]] as the initial quota. |
||
+ | |||
+ | The '''Hamilton method''' (or Largest Remainder-Hare/LR-Hare) is a version of the [[largest remainder method]] for allocating seats [[proportional representation|proportionally]] for representative assemblies with [[Party-list proportional representation|party list]] [[voting system]]s. It uses the [[Hare quota]] as the initial quota. |
||
+ | |||
+ | ==Example== |
||
+ | |||
+ | {{US_House_apportionment_example}} |
||
+ | |||
+ | The quota is 3 615 920 ÷ 60 = 60 265.333. Dividing the state populations by the quota gives |
||
+ | |||
+ | <table class="wikitable" border=""> |
||
+ | <tr> |
||
+ | <th>State</th> |
||
+ | <th>Quotient</th> |
||
+ | <th>Remainder</th> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Virginia</td> |
||
+ | <td align="right">10</td> |
||
+ | <td align="right">27 906.7</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Massachusetts</td> |
||
+ | <td align="right">7</td> |
||
+ | <td align="right">53 469.7</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Pennsylvania</td> |
||
+ | <td align="right">7</td> |
||
+ | <td align="right">11 021.7</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>North Carolina</td> |
||
+ | <td align="right">5</td> |
||
+ | <td align="right">52 196.3</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>New York</td> |
||
+ | <td align="right">5</td> |
||
+ | <td align="right">30 262.3</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Maryland</td> |
||
+ | <td align="right">4</td> |
||
+ | <td align="right">37 452.7</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Connecticut</td> |
||
+ | <td align="right">3</td> |
||
+ | <td align="right">56 045.0</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>South Carolina</td> |
||
+ | <td align="right">3</td> |
||
+ | <td align="right">25 440.0</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>New Jersey</td> |
||
+ | <td align="right">2</td> |
||
+ | <td align="right">59 039.3</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>New Hampshire</td> |
||
+ | <td align="right">2</td> |
||
+ | <td align="right">21 291.3</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Vermont</td> |
||
+ | <td align="right">1</td> |
||
+ | <td align="right">25 267.7</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Georgia</td> |
||
+ | <td align="right">1</td> |
||
+ | <td align="right">10 569.7</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Kentucky</td> |
||
+ | <td align="right">1</td> |
||
+ | <td align="right">8 439.7</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Rhode Island</td> |
||
+ | <td align="right">1</td> |
||
+ | <td align="right">8 180.7</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Delaware</td> |
||
+ | <td align="right">0</td> |
||
+ | <td align="right">55 540.0</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <th>Total</th> |
||
+ | <th align="right">52</th> |
||
+ | </tr> |
||
+ | </table> |
||
+ | |||
+ | Each state receives a number of seats equal to the integer part of the quotient. The remaining 8 seats are given to the states with the largest remainders: New Jersey, Connecticut, Delaware, Massachusetts, North Carolina, Maryland, New York, and Virginia. The final apportionment is: |
||
+ | |||
+ | <table class="wikitable" border=""> |
||
+ | <tr> |
||
+ | <th>State</th> |
||
+ | <th>Seats</th> |
||
+ | <th>District size</th> |
||
+ | <th>Rel. rep.</th> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Virginia</td> |
||
+ | <td align="right">11</td> |
||
+ | <td align="right">57 324</td> |
||
+ | <td align="right">1.0513</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Massachusetts</td> |
||
+ | <td align="right">8</td> |
||
+ | <td align="right">59 416</td> |
||
+ | <td align="right">1.0143</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Pennsylvania</td> |
||
+ | <td align="right">7</td> |
||
+ | <td align="right">61 840</td> |
||
+ | <td align="right">0.9745</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>North Carolina</td> |
||
+ | <td align="right">6</td> |
||
+ | <td align="right">58 920</td> |
||
+ | <td align="right">1.0228</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>New York</td> |
||
+ | <td align="right">6</td> |
||
+ | <td align="right">55 265</td> |
||
+ | <td align="right">1.0905</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Maryland</td> |
||
+ | <td align="right">5</td> |
||
+ | <td align="right">55 703</td> |
||
+ | <td align="right">1.0819</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Connecticut</td> |
||
+ | <td align="right">4</td> |
||
+ | <td align="right">59 210</td> |
||
+ | <td align="right">1.0178</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>South Carolina</td> |
||
+ | <td align="right">3</td> |
||
+ | <td align="right">68 745</td> |
||
+ | <td align="right">0.8766</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>New Jersey</td> |
||
+ | <td align="right">3</td> |
||
+ | <td align="right">59 857</td> |
||
+ | <td align="right">1.0068</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>New Hampshire</td> |
||
+ | <td align="right">2</td> |
||
+ | <td align="right">70 911</td> |
||
+ | <td align="right">0.8499</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Vermont</td> |
||
+ | <td align="right">1</td> |
||
+ | <td align="right">85 533</td> |
||
+ | <td align="right">0.7046</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Georgia</td> |
||
+ | <td align="right">1</td> |
||
+ | <td align="right">70 835</td> |
||
+ | <td align="right">0.8562</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Kentucky</td> |
||
+ | <td align="right">1</td> |
||
+ | <td align="right">68 705</td> |
||
+ | <td align="right">0.8772</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Rhode Island</td> |
||
+ | <td align="right">1</td> |
||
+ | <td align="right">68 446</td> |
||
+ | <td align="right">0.8805</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <td>Delaware</td> |
||
+ | <td align="right">1</td> |
||
+ | <td align="right">55 540</td> |
||
+ | <td align="right">1.0851</td> |
||
+ | </tr> |
||
+ | <tr> |
||
+ | <th>Total</th> |
||
+ | <th align="right">60</th> |
||
+ | </tr> |
||
+ | </table> |
||
+ | |||
+ | == Extensions of theory == |
||
+ | |||
+ | Several [[cardinal PR]] methods reduce to Hamilton if certain divisors are used. Some of which are: |
||
+ | |||
+ | * [[Sequential Monroe voting]] |
||
+ | * [[Sequentially Spent Score]] |
||
+ | * [[Monroe's method]] |
||
+ | |||
+ | == Notes == |
||
+ | Hamilton doesn't guarantee that a majority of voters will always win at least half of the seats (though LR-Hagenbach-Bischoff does, since a majority always has more votes than a majority of [[Hagenbach-Bischoff quota|Hagenbach-Bischoff quotas]]). |
||
+ | {| class="wikitable" |
||
+ | |+35-seat example |
||
+ | ! |
||
+ | !Votes |
||
+ | !Votes % |
||
+ | !Fraction |
||
+ | !Automatic seats |
||
+ | !Remainders |
||
+ | !Additional seats |
||
+ | !Final seats |
||
+ | !Seats % |
||
+ | |- |
||
+ | |A |
||
+ | |'''503''' |
||
+ | |'''50.3%''' |
||
+ | |17.605 |
||
+ | |17 |
||
+ | |0.605 |
||
+ | | |
||
+ | |17 |
||
+ | |'''48.57%''' |
||
+ | |- |
||
+ | |B |
||
+ | |304 |
||
+ | |30.4% |
||
+ | |10.640 |
||
+ | |10 |
||
+ | |0.640 |
||
+ | | +1 |
||
+ | |11 |
||
+ | |31.43% |
||
+ | |- |
||
+ | |C |
||
+ | |193 |
||
+ | |19.3% |
||
+ | |6.755 |
||
+ | |6 |
||
+ | |0.755 |
||
+ | | +1 |
||
+ | |7 |
||
+ | |20% |
||
+ | |- |
||
+ | |Total seats awarded |
||
+ | | |
||
+ | | |
||
+ | | |
||
+ | |33 |
||
+ | | |
||
+ | | +2 |
||
+ | |35 |
||
+ | | |
||
+ | |} |
||
+ | Party A, with 50.3% of the votes, only gets 17 out of 35 seats, which is 48.57% of the seats, a minority.<ref>{{Cite web|url=https://userpages.umbc.edu/~nmiller/RESEARCH/NRMILLER.PCS2013.pdf|title=ELECTION INVERSIONS |
||
+ | UNDER PROPORTIONAL REPRESENTATION|last=|first=|date=|website=|page=16|url-status=live|archive-url=|archive-date=|access-date=}}</ref> |
||
==See also== |
==See also== |
||
− | * [[List of democracy and elections-related topics]] |
||
− | *[[Alexander Hamilton]] |
||
*[[Thomas Hare]] |
*[[Thomas Hare]] |
||
*[[Alabama paradox]] |
*[[Alabama paradox]] |
||
− | *[[Largest remainder method]]-details on the Hamilton method |
||
− | [[Category: |
+ | [[Category:Apportionment methods]] |
{{fromwikipedia}} |
{{fromwikipedia}} |
Latest revision as of 04:36, 18 April 2020
The Hamilton method (or Largest Remainder-Hare/LR-Hare) is a version of the largest remainder method for allocating seats proportionally for representative assemblies with party list voting systems. It uses the Hare quota as the initial quota.
Example[edit | edit source]
In 1790, the U.S. had 15 states. For the purpose of allocating seats in the House of Representatives, the state populations were as follows:
State | Population |
---|---|
Virginia | 630 560 |
Massachusetts | 475 327 |
Pennsylvania | 432 879 |
North Carolina | 353 523 |
New York | 331 589 |
Maryland | 278 514 |
Connecticut | 236 841 |
South Carolina | 206 236 |
New Jersey | 179 570 |
New Hampshire | 141 822 |
Vermont | 85 533 |
Georgia | 70 835 |
Kentucky | 68 705 |
Rhode Island | 68 446 |
Delaware | 55 540 |
Total | 3 615 920 |
Suppose that there were to be 60 seats in the House.
The quota is 3 615 920 ÷ 60 = 60 265.333. Dividing the state populations by the quota gives
State | Quotient | Remainder |
---|---|---|
Virginia | 10 | 27 906.7 |
Massachusetts | 7 | 53 469.7 |
Pennsylvania | 7 | 11 021.7 |
North Carolina | 5 | 52 196.3 |
New York | 5 | 30 262.3 |
Maryland | 4 | 37 452.7 |
Connecticut | 3 | 56 045.0 |
South Carolina | 3 | 25 440.0 |
New Jersey | 2 | 59 039.3 |
New Hampshire | 2 | 21 291.3 |
Vermont | 1 | 25 267.7 |
Georgia | 1 | 10 569.7 |
Kentucky | 1 | 8 439.7 |
Rhode Island | 1 | 8 180.7 |
Delaware | 0 | 55 540.0 |
Total | 52 |
Each state receives a number of seats equal to the integer part of the quotient. The remaining 8 seats are given to the states with the largest remainders: New Jersey, Connecticut, Delaware, Massachusetts, North Carolina, Maryland, New York, and Virginia. The final apportionment is:
State | Seats | District size | Rel. rep. |
---|---|---|---|
Virginia | 11 | 57 324 | 1.0513 |
Massachusetts | 8 | 59 416 | 1.0143 |
Pennsylvania | 7 | 61 840 | 0.9745 |
North Carolina | 6 | 58 920 | 1.0228 |
New York | 6 | 55 265 | 1.0905 |
Maryland | 5 | 55 703 | 1.0819 |
Connecticut | 4 | 59 210 | 1.0178 |
South Carolina | 3 | 68 745 | 0.8766 |
New Jersey | 3 | 59 857 | 1.0068 |
New Hampshire | 2 | 70 911 | 0.8499 |
Vermont | 1 | 85 533 | 0.7046 |
Georgia | 1 | 70 835 | 0.8562 |
Kentucky | 1 | 68 705 | 0.8772 |
Rhode Island | 1 | 68 446 | 0.8805 |
Delaware | 1 | 55 540 | 1.0851 |
Total | 60 |
Extensions of theory[edit | edit source]
Several cardinal PR methods reduce to Hamilton if certain divisors are used. Some of which are:
Notes[edit | edit source]
Hamilton doesn't guarantee that a majority of voters will always win at least half of the seats (though LR-Hagenbach-Bischoff does, since a majority always has more votes than a majority of Hagenbach-Bischoff quotas).
Votes | Votes % | Fraction | Automatic seats | Remainders | Additional seats | Final seats | Seats % | |
---|---|---|---|---|---|---|---|---|
A | 503 | 50.3% | 17.605 | 17 | 0.605 | 17 | 48.57% | |
B | 304 | 30.4% | 10.640 | 10 | 0.640 | +1 | 11 | 31.43% |
C | 193 | 19.3% | 6.755 | 6 | 0.755 | +1 | 7 | 20% |
Total seats awarded | 33 | +2 | 35 |
Party A, with 50.3% of the votes, only gets 17 out of 35 seats, which is 48.57% of the seats, a minority.[1]
See also[edit | edit source]
This page uses Creative Commons Licensed content from Wikipedia (view authors). |
- ↑ "ELECTION INVERSIONS UNDER PROPORTIONAL REPRESENTATION" (PDF). p. 16. line feed character in
|title=
at position 20 (help)