Score voting: Difference between revisions

Content added Content deleted
No edit summary
(→‎Notes: Attempt to remove bias by pointing out how absurd the behaviour described would be)
Line 152: Line 152:
Score voting can be simulated with Approval ballots if every voter votes probabilistically according to their utility value for each candidate i.e. a voter who thinks a candidate is a 6 out of 10 would use a dice or other randomizing device to approve that candidate with only 60% probability. With this approach, the Approval voting winner will probabilistically be the Score voting winner so long as there are many voters. In some sense, cardinal utility is tied to randomness in that it is often considered a better measure than ordinal utility when analyzing decision-making under uncertainty.
Score voting can be simulated with Approval ballots if every voter votes probabilistically according to their utility value for each candidate i.e. a voter who thinks a candidate is a 6 out of 10 would use a dice or other randomizing device to approve that candidate with only 60% probability. With this approach, the Approval voting winner will probabilistically be the Score voting winner so long as there are many voters. In some sense, cardinal utility is tied to randomness in that it is often considered a better measure than ordinal utility when analyzing decision-making under uncertainty.


Score is probably the only major deterministic voting method which can fail the majority criterion in the two-candidate case. Oftentimes, voting reform proposals for governmental elections implement an alternative voting method when 3+ candidates run, but allow or mandate using [[FPTP]] when only two candidates run, ostensibly for simplicity and because it will elect the pairwise winner anyways; this is not as good an idea if Score is the reform proposal. Indeed, some who prefer Score argue that FPTP is fine for two-candidate elections, but this can lead to an illogicality, which is failing [[Independence of irrelevant alternatives]]: when there is a [[Condorcet cycle]] involving the Score winner when 3+ candidates are running, then if all candidates except the Score winner and the candidate they pairwise lose to drop out of the election, then the use of FPTP will lead to the Score winner now losing even if every voter was honest and had the same preferences. This can be averted by the voters if they use a probabilistic strategy to decide how to vote in the FPTP election however, since they can simulate their margin of strength of preference between the two candidates by choosing to either vote for their preferred candidate between the two or not vote. See the [[Utility]] page for an example.
Score is probably the only major deterministic voting method which can fail the majority criterion in the two-candidate case. It is, however, practically impossible to happen in practice since the scale for score voting is set by the candidates who run. With only two candidates each voter will vote one candidate at each extreme of the scale resulting in a reduction to approval voting. It is then also very unlikely that any voter would approve of both or neither candidate when voting. Oftentimes, voting reform proposals for governmental elections implement an alternative voting method when 3+ candidates run, but allow or mandate using [[FPTP]] when only two candidates run, ostensibly for simplicity and because it will elect the pairwise winner anyways. Some who prefer Score argue that FPTP is fine for two-candidate elections since score will reduce to FPTP for rational voters.

Despite this, if enough voters vote in a way contrary both to how the system is intended and their honest interest there can be results similar to failing [[Independence of irrelevant alternatives]]. When there is a [[Condorcet cycle]] involving the Score winner when 3+ candidates are running, then if all candidates except the Score winner and the candidate they pairwise lose to drop out of the election, then the use of FPTP will lead to the Score winner now losing even if every voter was honest and had the same preferences. Such a situation is virtually impossible since if a winner drops out after an election another will be held. This can be averted by the voters if they use a probabilistic strategy to decide how to vote in the FPTP election however, since they can simulate their margin of strength of preference between the two candidates by choosing to either vote for their preferred candidate between the two or not vote. See the [[Utility]] page for an example.


== References ==
== References ==