Stable winner set: Difference between revisions

Content added Content deleted
(Simplify point 3 at top.)
Line 9: Line 9:
# In most cases K′ < K. This means that the definition of a stable winner set is that a subgroup of the population cannot be more happy with fewer winners given the relevant size comparison of the Ks and the group. This relates to how PR methods attempt to maximize voters' representation by electing those who sizeable subgroups each strictly prefer, rather than only those who only majorities or pluralities can agree on.
# In most cases K′ < K. This means that the definition of a stable winner set is that a subgroup of the population cannot be more happy with fewer winners given the relevant size comparison of the Ks and the group. This relates to how PR methods attempt to maximize voters' representation by electing those who sizeable subgroups each strictly prefer, rather than only those who only majorities or pluralities can agree on.
# There can be more than one stable winner set. The group of all stable winner sets is referred to as ''the core''.
# There can be more than one stable winner set. The group of all stable winner sets is referred to as ''the core''.
#The definition of V(X,Y) must be such that, if Y is a subset of X, V(X, Y) must be 0. That is to say: it does not make sense for voters to want to "block" a winner set because they like a set of candidates, if all of that set of candidates won.
#The definition of V(X,Y) must be such that, if Y is a subset of X, V(X, Y) must be 0. That is to say: it does not make sense for voters to want to "block" a winner set because of how much they like a set of candidates who all won.
#The term "strictly prefer" can have various meanings:
#The term "strictly prefer" can have various meanings:
##In the simplest model, voters have a certain quantity of "utility" for each candidate, and they strictly prefer set X over Y iff the sum of their utility for X is greater than the sum of their utilty for Y. However, this definition, while simple, is problematic, because it can hinge on comparisons between "utilities" for winner sets of different sizes.
##In the simplest model, voters have a certain quantity of "utility" for each candidate, and they strictly prefer set X over Y iff the sum of their utility for X is greater than the sum of their utilty for Y. However, this definition, while simple, is problematic, because it can hinge on comparisons between "utilities" for winner sets of different sizes.