Favourability voting
Favourability voting is an ultra high-definition family of electoral systems. It includes any voting system which includes separate individual scales for both approval and disapproval and also allows voters to express these two metrics on a single candidate. This is notably the only one in which individual votes can be displayed as a point in a whole entire arranged matrix, of approval versus disapproval.
Method
Favourability Voting is a cardinal voting method based on both score voting and approval voting in which voters (usually numerically) grade each candidate and/or party on both of two separately divided scales: for approval and disapproval.
The final result for each of candidates or parties is then deduced from the net favourability, which is measuring the closeness towards a perfect score of 100% approval and 0% disapproval.
Variants
Pairwise Favourability Voting
Results | against | Sum | ||||||
---|---|---|---|---|---|---|---|---|
Erin | Martin | Casey | Riley | Blythe | Leslie | |||
for | Erin | +103.90 | ||||||
Martin | +26.62 | |||||||
Casey | +26.62 | |||||||
Riley | +70.54 | |||||||
Blythe | +58.90 | |||||||
Leslie | +85.75 |
Favourability Voting (FV) has an even more extensive, one-on-one matchup variant; Pairwise Favourability Voting (PFV), which generates a heavily granular dataset, typically by using a +0.00% to +100.00% range for approvals and a -0.00% to -100.00% range for disapprovals. This sentiment-reading system collects more expressive information and show greater differentiation between voters than just about any other voting system does. The reason why Pairwise Favourability Voting is even more intricate than the other variations is because this is where you can freely measure how much you approve and disapprove of each candidate and/or party not just only individually but also in every single last possible one-on-one matchup there is. This is completely done and treated as wholly independent of each other and matchups such as A vs. B and B vs. A once again do not have to add up to 100 since they are not tied to each other (i.e. one might rate A in disapproval as -33.10% against B but B only -50.20% against A). As you can see, each cell is treated as a different scale from each other and thus intransitive (circular preference) results in matchups (such as A > B > C > A) are fully allowed as the calculation process, which is different from other pairwise methods in that an overall score for each candidate is derived from the summation of their personal score and matchup scores together, and as such manages to bypass Condorcet's paradox. Scientists have determined that circles of preference are a natural occurrence in humans and this is in fact how many of our thought processes play out.
You may also notice the background tints in the example table above. These four colour shades represent which one of the four quadrants each one of the matchups falls into: green for Approval (high approval, low disapproval), yellow for Bittersweetness (high approval, high disapproval), red for Disapproval (low approval, high disapproval), and last but not least, silver for Indifference (low approval, low disapproval).
Other variants
Noncomparative Favourability Voting
For example, in the more simple, singular version, Noncomparative Favourability Voting, someone can simultaneously express +66.80% approval and -45.70% disapproval (for a net favourability of +19.10%) at the same time for any single candidate or party they wish. These two do not ever need to add up to each other. The positive percentages are then subtracted by the negative percentages to reach an election outcome, and whoever wins the highest sum (net approval) is selected.
Evaluative Favourability Voting
Besides the other versions, there is also the most simplified form, which is Evaluative Favourability Voting (EFV), with no scores, and only upvotes and downvotes.